Nash Equilibrium - definition

- A mixed-strategy profile σ^* is a Nash equilibrium (NE) if for every player *i* we have $u_i(\sigma^*_i, \sigma^*_{-i}) \ge u_i(s_i, \sigma^*_{-i})$ for all $s_i \in S_i$
- NE is such set of strategies, that no player is willing to deviate to any other pure strategy.
- In other words, the strategies are multilateral best responses

Nash Equilibrium -examples

In the Ad game, NE is a pair of pure strategies (A, A)

		Player 2		
		A N		
Player	А	40, 40	60, 30	
1	N	30, 60	50, 50	

Nash Equilibrium -examples

In the game below, (M, R) is NE

	Player 2			
		L	R	
	U	3, 1	0, 2	
Player 1	Μ	0, 0	3, 1	
	D	1, 2	1, 1	

Nash Equilibrium -examples

"Matching pennies" does not have a purestrategy NE

		P1. 2		
		Heads	Tails	
Pl. 1	Heads	1, -1	-1, 1	
	Tails	-1, 1	1, -1	

Let p denote the prob. of Heads for player 1, q – the prob. of Heads for player 2

correspondences

An Easy Trick

- Drawing best response correspondences is fun, but time consuming.
- Instead, we can use the following fact:
 - If player *i* mixes between two or more pure strategies in NE, then in equilibrium she must be indifferent between all these pure strategies
- Hence, if we want to find a mixed-strategy NE, we must find the probability distribution, which will make player *i* indifferent between the pure strategies

Battle of Sexes

Find all NE in the game below

		Wife	
		Football	Ballet
Husband	Football	<u>2, 3</u>	0, 0
	Ballet	1, 1	<u>3, 2</u>

Existence of Nash Equilibrium

Nash Theorem:

- Every finite normal form game has a mixed-strategy equilibrium
- Proof (heuristic): Let $r_i(\sigma_{-i})$ denote the bestresponse correspondence for player *i*. Let $r(\sigma) : \sum \rightarrow \sum$ denote the Cartesian product of r_i 's. Then notice that $r(\sigma)$ is nonempty and convex for all σ and has a closed graph. Then refer to Kakutani's fixed-point theorem and state that $r(\sigma)$ has a fixed point, where $\sigma^* \in r(\sigma^*)$, which is a NE.

Other Existence Theorems

Debreu-Glicksberg-Fan Theorem:

- Consider a normal-form game where all S_i are compact convex subsets of Euclidean space. If the payoff functions u_i are continuous in s and quasiconcave in s_i then there exists a pure-strategy NE.
- Glicksberg Theorem:
 - Consider a normal-form game where all S_i are compact subsets of metric space. If the payoff functions u_i are continuous then there exists a mixed-strategy NE.

Non-Uniqueness of NE

The bigger problem is that there are often many NE. We can use "refinements" of the equilibrium to find a more concrete solution:

Focal Point

Pareto Perfection

Pareto Perfection

(B,F) Pareto dominates (D,E)

	Player 2				
		E	F	G	Н
Player 1	А	2, 2	2, 6	1, 4	0, 4
-	В	0, 0	10, 10	2, 1	1, 1
	С	7, 0	2, 2	1, 5	5, 1
-	D	9, 5	1, 3	0, 2	4, 4
-					1

Focal Point

Which NE is the focal point?

	Player 2				
		E	F	G	Н
Player 1	А	100, 100	2, 6	1, 4	0, 4
	В	0, 0	100, 100	2, 1	1, 1
	С	7, 0	2, 2	99, 99	5, 1
	D	9, 5	1, 3	0, 2	100, 100

Correlated Equilibria

- Look at the Battle of Sexes. Do you think that the mixed-strategy equilibrium would be played?
- Not if players can communicate before the play. Then they can avoid the bad outcomes. They can allow Nature (a commonly observed random event) to decide which equilibrium they will play. Their expected payoffs may be bigger than in the mixedstrategy NE.
- Interestingly, if the players can observe imperfectly correlated signals, they can sometimes achieve expected payoff larger than in any NE.